Enzo Lectures

Mike Norman, Matt Turk Laboratory for Computational Astrophysics UC San Diego

	Morning	Afternoon
Mon.	Introduction to Enzo	
Tue.	 Setting Up and Running Enzo Enzo Projects 	Introduction to YT
Wed.	Basic Enzo Algorithms	Lab session
Thu.	Applications to First Stars, First Galaxies, and Reionization	Lab session
Fri.	What's New in Enzo 2.0?	Q & A

Basic Enzo Algorithms

Greg Bryan (Columbia University) gbryan@astro.columbia.edu

Topics

- Hydrodynamics
 - PPM
 - ZEUS
- II. AMR
 - Timestepping
 - Projection
 - Flux correction
- III. Gravity
 - Root grid
 - Subgrids
- IV. Particles
- v. Chemistry & Cooling
 - Multispecies

I. Hydrodynamics

Show PPM movies

Fluid Equations - grid::SolveHydroEquations

$$\begin{array}{ll} \text{Mass conservation} & \frac{\partial \rho}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla \rho = -\frac{1}{a} \rho \nabla \cdot \mathbf{v} \\ \\ \text{Momentum} & \frac{\partial \mathbf{v}}{\partial t} + \frac{1}{a} (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\dot{a}}{a} \mathbf{v} - \frac{1}{a \rho} \nabla p - \frac{1}{a} \nabla \phi, \\ \\ \text{Energy conservation} & \frac{\partial E}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla E = -\frac{\dot{a}}{a} (3 \frac{p}{\rho} + \mathbf{v}^2) - \frac{1}{a \rho} \nabla \cdot (p \mathbf{v}) - \frac{1}{a} \mathbf{v} \cdot \nabla \phi + \Gamma - \Lambda. \\ \\ E = e + \frac{1}{2} \mathbf{v}^2, \\ \\ \text{Ideal Gas EOS} & e = p / \left[(\gamma - 1) \, \rho \right], \\ \\ \text{Self-gravity} & \nabla^2 \phi = \frac{4 \pi G}{a} (\rho_{total} - \rho_0). \end{array}$$

Field names: Density, Pressure, TotalEnergy, InternalEnergy, Velocity1, Velocity2, Velocity3

grid class: accessing the fields - grid.h

In grid class:

- BaryonFields[] array of pointers to each field
 - ▶ Fortran (row-major) ordering within each field
- GridRank dimensionality of problem
- GridDimensions[] dimensions of this grid
- GridStartIndex[] Index of first "active" cell (usually 3)
 - First (and last) three cells are ghost or boundary zones

```
int DensNum = FindField(Density, FieldType, NumberOfBaryonFields);
int Vel1Num = FindField(Velocity1, FieldType, NumberOfBaryonFields);

for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {
  for (j = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {
    for (i = GridStartIndex[0]; i <= GridEndIndex[0]; i++) {
      BaryonField[Vel1Num][GINDEX(i,j,k)] *= BaryonField[DensNum][GINDEX(I,j,k)];
    }
  }
}</pre>
```


Enzo file name convention

- General C++ routines:
 - Routine name: EvolveLevel(...)
 - In file: EvolveLevel.C
 - One routine per file!
- grid methods:
 - Routine name: grid::MyName(...)
 - In file: Grid_MyName.C
- Fortran routines:
 - Routine name: intvar(...)
 - In file: intvar.src
 - .src is used because routine is fed first through C preprocessor

PPM Solver: grid::SolvePPM_DE

- HydroMethod = 0
- ▶ PPM: e.g. mass conservation equation
 - Flux conservative form:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v}{\partial x} = 0$$

$$\rho_j^n = \rho(x_j, t^n)$$

$$\rho_j^n = \rho(x_j, t^n)$$
Mass flux across j+1/2 boundary

In discrete form:

$$\rho_j^{n+1} = \rho_j^n + \Delta t \left(\frac{\overline{\rho_{j+1/2}} \overline{v_{j+1/2}} - \overline{\rho_{j-1/2}} \overline{v_{j-1/2}}}{\Delta x_j} \right)$$

- ▶ How to compute mass flux?
- Note: multi-dimensions handled by operating splitting
 - grid::xEulerSweep.C, grid::yEulerSweep.C, grid::zEulerSweep.C

Grid::SolvePPM_DE

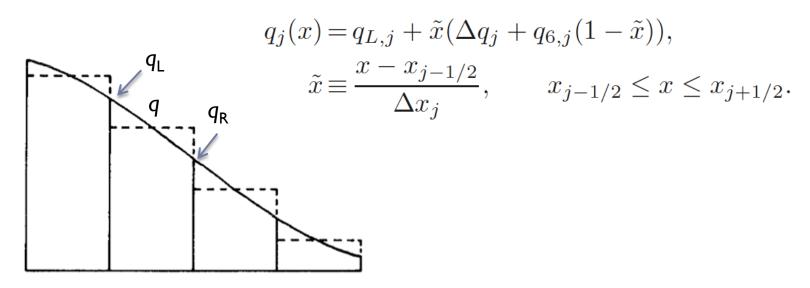
```
// Update in x-direction
for (k = 0; k < GridDimension[2]; k++) {
   if (this->xEulerSweep(k, NumberOfSubgrids, SubgridFluxes,
                    GridGlobalStart, CellWidthTemp, GravityOn,
                    NumberOfColours, colnum) == FAIL) {
      fprintf(stderr, "Error in xEulerSweep. k = %d\n", k);
      ENZO_FAIL("");
} // ENDFOR k
// Update in y-direction
for (i = 0; i < GridDimension[0]; i++) {
    if (this->yEulerSweep(i, NumberOfSubgrids, SubgridFluxes,
                    GridGlobalStart, CellWidthTemp, GravityOn,
                    NumberOfColours, colnum) == FAIL) {
    fprintf(stderr, "Error in yEulerSweep. i = %d\n", i);
    ENZO FAIL("");
   // ENDFOR i
```

PPM: 1D hydro update: grid::xEulerSweep

- Copy 2D slice out of cube
- Compute pressure on slice (pgas2d)
- Calculate diffusion/steepening coefficients (calcdiss)
- Compute Left and Right states on each cell edge (inteuler)
- Solve Reimann problem at each cell edge (twoshock)
- Compute fluxes of conserved quantities at each cell edge (euler)
- Save fluxes for future use
- Return slice to cube

PPM: reconstruction: inteuler

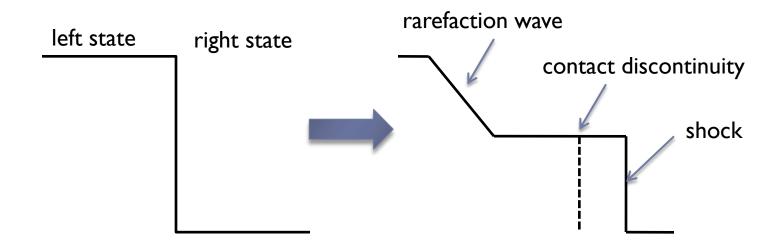
Piecewise parabolic representation:



- ▶ Coefficients (Δq and q_6) computed with mean q and q_L , q_R .
- For smooth flow (like shown above), this is fine, but can cause a problem for discontinuities (e.g. shocks)
- $ightharpoonup q_L, q_R$ are modified to ensure monotonicity (no new extrema)

PPM: Godunov method: twoshock

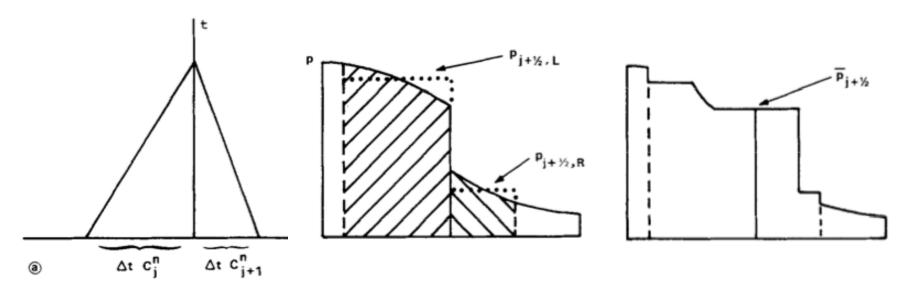
To compute flux at cell boundary, take two initial constant states and then solve Riemann problem at interface



- Given solution, can compute flux across boundary
- Advantage: correctly satisfies jump conditions for shock

PPM: Godunov method: inteuler, twoshock

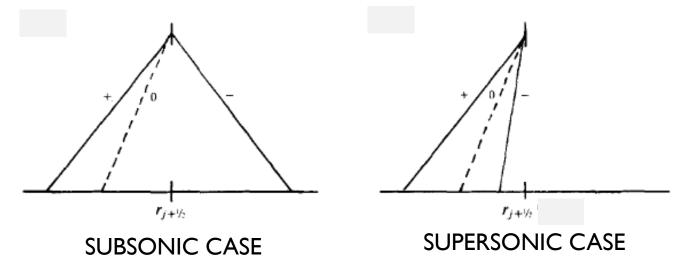
▶ For PPM, compute left and right states by averaging over characteristic region (causal region for time step Δt)



Average left and right regions become constant regions to be feed into Riemann solver (twoshock).

PPM: Eulerian corrections: euler

- ▶ Eulerian case more complicated because cell edge is fixed.
 - Characteristic region for fixed cell more complicated:



Note that solution is not known ahead of time so two-step procedure is used (see Collela & Woodward 1984 for details)

Difficulty with very high Mach flows

- PPM is flux conservative so natural variables are mass, momentum, total energy
- ▶ Internal energy (e) computed from total energy (E):

$$e = E - \frac{1}{2}\mathbf{v^2}$$

- ▶ Problem can arise in very high Mach flows when E >> e
 - e is difference between two large numbers
- ▶ Not important for flow dynamics since p is negligible
 - But can cause problems if we want accurate temperatures since $T \alpha e$

Dual Energy Formalism:

grid::ComputePresureDualEnergyFormalism

Solution: Also evolve equation for internal energy:

$$\frac{\partial e}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla e = \frac{p}{a\rho} \nabla \cdot \mathbf{v}$$

Select energy to use depending on ratio e/E:

$$p = \begin{cases} \rho(\gamma - 1)(E - \mathbf{v}^2/2), & (E - \mathbf{v}^2/2)/E > \eta_1; \\ \rho(\gamma - 1)e, & (E - \mathbf{v}^2/2)/E < \eta_1. \end{cases}$$

- Select with DualEnergyFormalism = 1
- Use when $v/c_s > \sim 20$
- Q:Why not just use e?
 - A: Equation for e is not in conservative form (source term).
 - Source term in internal energy equation causes diffusion

Zeus Solver: grid::ZeusSolver

- Traditional finite difference method
 - Artificial viscosity (see Stone & Norman 1992)
- HydroMethod = 2
- Source step: ZeusSource
 - Pressure (and gravity) update: $v_j^{n+a} = v_j^n \frac{\Delta t}{\Delta x_j} \frac{p_j^n p_{j-1}^n}{(\rho_i^n + \rho_{j-1}^n)/2}$
 - Artificial viscosity: $v_{j}^{n+b} = v_{j}^{n+a} \frac{\Delta t}{\Delta x_{j}} \frac{q_{j}^{n+a} q_{j-1}^{n+a}}{(\rho_{j}^{n} + \rho_{j-1}^{n})/2}$ $q_{j} = \begin{cases} Q_{\text{AV}} \rho_{j} (v_{j+1} v_{j})^{2} & \text{if } (v_{j+1} v_{j}) < 0 \\ 0 & \text{otherwise} \end{cases}$
 - Compression heating: $e_j^{n+c} = e_j^{n+b} \left(\frac{1 (\Delta t/2)(\gamma 1)(\nabla \cdot \mathbf{v})_j}{1 + (\Delta t/2)(\gamma 1)(\nabla \cdot \mathbf{v})_j} \right)$

Zeus Solver: grid::ZeusSolver

Transport step: Zeus_xTransport

e.g.
$$\rho_j^{n+d} = \rho_j^n - \frac{\Delta t}{\Delta x} (v_{j+1/2}^{n+c} \rho_{j+1/2}^* - v_{j-1/2}^{n+c} \rho_{j-1/2}^*)$$

- Note conservative form (transport part preserves mass)
- Note v_{j+1} is face-centered so is really at cell-edge, but density needs to be interpolated. Zeus uses an upwinded van Leer (linear) interpolation:

$$q_j(x) = q_{L,j} + \tilde{x}(\Delta q_j)$$

- Similarly for momentum and energy (and y and z)
 - Zeus_yTransport, Zeus_zTransport

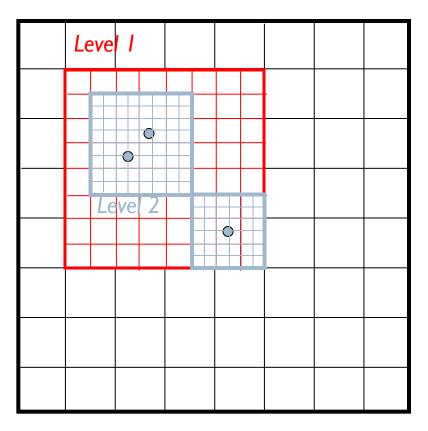
Zeus Solver: grid::ZeusSolver

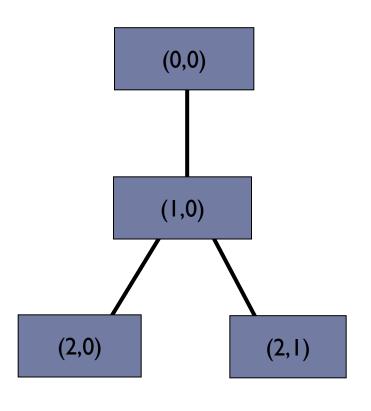
- PPM is more accurate, slower but Zeus is faster and more robust.
 - PPM often fails ("dnu < 0" error) when fast cooling generates large density gradients.
 - Try out new hydro solvers in Enzo 2.0!
- Implementation differences with PPM:
 - Internal energy equation only
 - ▶ In code, TotalEnergy field is really internal energy (ugh!)
 - Velocities are face-centered
 - BaryonField[Vel1Num][GINDEX(i,j,k)] really "lives" at i-1/2

II. Block Structured AMR

Grid Hierarchy Data Structure

Level 0





AMR: EvolveHierarchy

- ▶ Root grid NxNxN, so $\Delta x = DomainWidth/N$
- ▶ Level L defined so $\Delta x = DomainWidth/(N2^L)$
- Starting with level 0, grid advanced by Δt
 - Main loop of EvolveHierarchy looks (roughly) like this:

```
InitializeHierarchy
While (Time < StopTime)
begin
  dt = ComputeTimeStep(0)
  EvolveLevel(0, dt)
  Time = Time + dt
  CheckForOutput(Time)
end</pre>
```

EvolveLevel does the heavy lifting

Time Step: grid::ComputeTimeStep

Timestep on level L is minimum of constraints over all level L grids:

$$\Delta t_{hydro} = min \left(\kappa_{hydro} \frac{a \Delta x}{c_s + |v_x|} \right)_L \qquad \kappa_{hydro} \text{ CourantSafetyFactor}$$

$$\Delta t_{dm} = min \left(\kappa_{dm} \frac{a \Delta x}{v_{dm,x}} \right)_L, \qquad \kappa_{dm} \quad \text{ParticleCourantSafetyFactor}$$

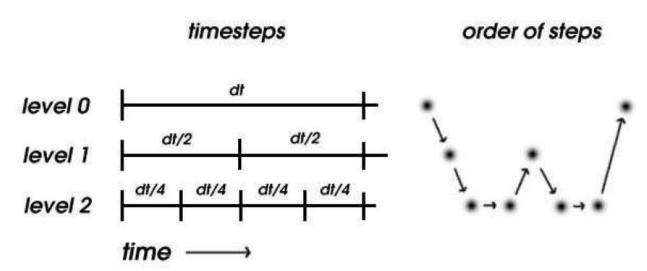
$$\Delta t_{exp} = f_{exp} \left(\frac{a}{\dot{a}} \right), \qquad \qquad f_{exp} \quad \text{MaximumExpansionFactor}$$

$$\Delta t_{accel} = min \left(\sqrt{\frac{\Delta x}{\ddot{g}}} \right)_L$$

+ others (e.g. MHD, FLD, etc.)

AMR: EvolveLevel

Levels advanced as follows:



- Timesteps may not be integer ratios
 - (Diagram assumes Courant condition dominates and sound speed is constant so: dt α Δx)
- This algorithm is defined in EvolveLevel

Advance grids on level: EvolveLevel

▶ The logic of EvolveLevel is given (roughly) as:

```
EvolveLevel(level)
          begin
            SetBoundaryValues
            while (Time < ParentTime)</pre>
            begin
              dt = ComputeTimeStep(level)
                                                 Already talked about this.
              SolveHydroEquations(dt)
              Time = Time + dt
              SetBoundaryValues
recursive \to EvolveLevel(level+1, dt)
              FluxCorrection
                                                Next, we'll talk about these
              Projection
              RebuildHierarchy(level+1)
            end
          end
```

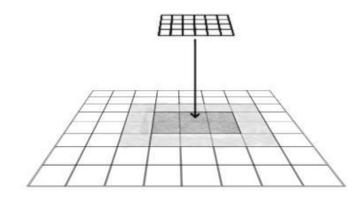

BC's: SetBoundaryConditions

- Setting "ghost" zones around outside of domain
 - grid::SetExternalBoundaryValues
 - Choices: reflecting, outflow, inflow, periodic
 - Only applied to level 0 grids (except periodic)
- Otherwise, two step procedure:
 - Interpolate ghost (boundary) zones from level L-I grid
 - grid::InterpolateBoundaryFromParent
 - □ Linear interpolation in time (OldBaryonFields)
 - □ Spatial interpolation controlled by InterpolationMethod
 - SecondOrderA recommended, default (3D, linear in space, monotonic)
 - Copy ghost zones from sibling grids
 - grid::CheckForOverlap and grid::CopyZonesFromGrid

Projection: grid::ProjectSolutionToParentGrid

- Structured AMR produces redundancy:
 - coarse and fine grids cover same region
- Need to restore consistency
- Correct coarse cells once grids have all reach the same time:

$$q^{\text{coarse}} = r^{-d} \sum q_{i,j,k}^{\text{fine}}$$



Flux Correction: grid::CorrectForRefinedFluxes

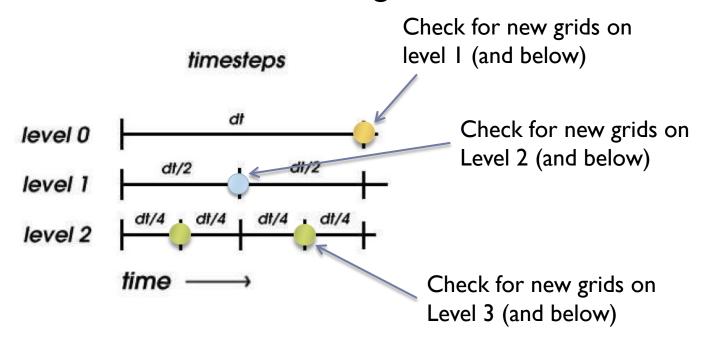
- Mismatch of fluxes occurs around boundary of fine grids
 - Coarse cell just outside boundary used coarse fluxes but coarse cell inside used fine fluxes
- Both fine and coarse fluxes saved from hydro solver

$$q^{\rm coarse} = \tilde{q}^{\rm coarse} - \Delta t \left(F^{\rm coarse} - \sum_{j,k} F^{fine}_{j,k}\right)$$
 Uncorrected coarse value
$$\begin{array}{c} {\rm Coarse\ flux} & {\rm Sum\ of\ fine\ fluxes} \\ {\rm across\ boundary} & {\rm Over\ 4\ (in\ 3D)} \end{array}$$

abutting fine cells

Rebuilding the Hierarchy: RebuildHierarchy

Need to check for cells needing more refinement



Refinement Criteria - grid::SetFlaggingField

- Many ways to flag cells for refinement
 - CellFlaggingMethod =

```
1 - refine by slope
2 - refine by baryon mass
3 - refine by shocks
4 - refine by particle mass
6 - refine by Jeans length
7 - refine if cooling time < cell width/sound speed
11 - refine by resistive length
12 - refine by defined region "MustRefineRegion"
13 - refine by metallicity</pre>
```

- Then rectangular grids must be chosen to cover all flagged cells with minimum "waste"
 - Done with machine vision technique
 - Looks for edges (inflection points in number of flagged cells)
 - ProtoSubgrid class

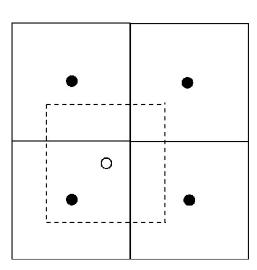
III. Gravity

Self-Gravity (SelfGravity = 1)

- Solve Poisson equation
- PrepareDensityField
 - BaryonField[Density] copied to GravitatingMassField
 - Particle mass is deposited in 8 nearest cells (CIC)
 - ▶ Particle position advanced by ½ step
 - DepositParticleMassField
- Root grid (level 0):
 - Potential solved with FFT

$$\tilde{\phi}(k) = G(k)\tilde{\rho}(k).$$

- ComputePotentialFieldLevelZero
- Potential differenced to get acceleration
 - grid::ComputeAccelerationField



Self-Gravity

Subgrids:

- Potential interpolated to boundary from parent
 - Grid::PreparePotentialField
- Each subgrid then solves Poisson equation using multigrid
 - Grid::SolveForPotential
- Note: this has two issues:
 - Interpolation errors on boundary can propagate to fine levels
 - ☐ Generally only an issue for steep potentials (point mass)
 - □ Ameliorated by having 6 ghost zones for gravity grid
 - Subgrids can have inconsistent potential gradients across boundary
 - ☐ Improved by copying new boundary conditions from sibilings and resolving the Poisson equation (PotentialIterations = 4 by default)
 - More accurate methods in development

Other Gravitational sources – grid::ComputeAccelerationFieldExternal

- Can also add fixed potential:
 - UniformGravity constant field
 - PointSourceGravity single point source
 - ExternalGravity NFW profile

IV. Particles

N-body dynamics

- ▶ Particles contribute mass to GravitatingMassField
- Particles accelerated by AccelerationField
 - Interpolated from grid (from 8 nearest cells)
- Particles advanced using leapfrog

$$x^{n+1/2} = x^n + (\Delta t/2)v^n$$

$$v^{n+1} = v^n + \Delta t a^{n+1/2}$$

$$x^{n+1} = x^{n+1/2} + (\Delta t/2)v^{n+1}$$

- grid::ComputeAccelerations
- Particles stored in the locally most-refined grid
 - ParticlePosition, ParticleVelocity, ParticleMass
- ▶ Tracer particles (massless) also available

IV. Chemistry and Cooling

Chemistry

Follows multiple species and solve rate equations

$$\frac{\partial \rho_i}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla \rho_i = -\frac{1}{a} \rho_i \nabla \cdot \mathbf{v} + \sum_j \sum_l k_{jl}(T) \rho_j \rho_l + \sum_j I_j \rho_j$$

- MultiSpecies = 1: H, H+, He, He+, He++, e-
- MultiSpecies = 2: adds H₂, H₂+, H-
- MultiSpecies = 3: adds D, D+ and HD
- grid:SolveRateEquations
 - (or grid::SolveRateAndCoolEquations if RadiativeCooling > 0)
- Rate equations solved using backwards differencing formula (BDF) with sub-cycles to prevent > 10% changes
 - Works well as long as chemical timescale not really short

Radiative Cooling - grid::SolveRadiativeCooling

- RadiativeCooling = 1
- Two modes:
 - MultiSpecies = 0
 - Equilibrium cooling table (reads file cool_rates.in)
 - ▶ Sub-cycles so that De < 10% in one cooling step</p>
 - MultiSpecies > 1
 - Computes cooling rate self-consistently from tracked-species
 - MetalCooling = 1: adds metal cooling from Glover & Jappsen (2007)
 - MetalCooling = 2: adds metal cooling from Raymond-Smith code
 - MetalCooling = 3: Cloudy Cooling table (Smith, Sigurdsson & Abel 2008)
- RadiationFieldType > 0
 - Add predefined radiative heating and ionization

Star Formation

- Work in progress many modes
- StarParticleCreation > 0
 - turns on and selects method (1-9)
 - For more details, see web page
- StarParticleFeedback > 0
 - Only valid for methods 1, 2, 7 and 8

More Physics in 2.0

See talks tomorrow!

